We analyze the cusp anomalous dimension in the (leading) ladder limit of SYMandpresentnewresultsforitshigher-orderperturbativeexpansion. Westudy two different limits with respect to the cusp angle ϕ. The first is the light-like regime where x = e iϕ → 0. This limit is characterised by a non-trivial expansion of the cusp anomaly as a sum of powers of log x, where the maximum exponent increases with the loop order. The coefficients of this expansion have remarkable transcendentality features and can be expressed by products of single zeta values. We show that the whole logarithmic expansion is fully captured by a solvable Woods-Saxon like one-dimensional potential. From the exact solution, we extract generating functions for the cusp anomaly as well as for the various specific transcendental structures appearing therein. The second limit that we discuss is the regime of small cusp angle. In this somewhat simpler case, we show how to organise the quantum mechanical perturbation theory in a novel efficient way by means of a suitable all-order Ansatz for the ground state of the associated Schrödinger problem. Our perturbative setup allows to systematically derive higher-order perturbative corrections in powers of the cusp angle as explicit non-perturbative functions of the effective coupling. This series approximation is compared with the numerical solution of the Schrödinger equation to show that we can achieve very good accuracy over the whole range of coupling and cusp angle. Our results have been obtained by relatively simple techniques. Nevertheless, they provide several non-trivial tests useful to check the application of Quantum Spectral Curve methods to the ladder approximation at non zero ϕ, in the two limits we studied.

On the cusp anomalous dimension in the ladder limit of N = 4 $$ \mathcal{N}=4 $$ SYM / Beccaria, Matteo; Fachechi, Alberto; Macorini, Guido. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2016:6(2016). [10.1007/jhep06(2016)009]

On the cusp anomalous dimension in the ladder limit of N = 4 $$ \mathcal{N}=4 $$ SYM

Fachechi, Alberto;
2016

Abstract

We analyze the cusp anomalous dimension in the (leading) ladder limit of SYMandpresentnewresultsforitshigher-orderperturbativeexpansion. Westudy two different limits with respect to the cusp angle ϕ. The first is the light-like regime where x = e iϕ → 0. This limit is characterised by a non-trivial expansion of the cusp anomaly as a sum of powers of log x, where the maximum exponent increases with the loop order. The coefficients of this expansion have remarkable transcendentality features and can be expressed by products of single zeta values. We show that the whole logarithmic expansion is fully captured by a solvable Woods-Saxon like one-dimensional potential. From the exact solution, we extract generating functions for the cusp anomaly as well as for the various specific transcendental structures appearing therein. The second limit that we discuss is the regime of small cusp angle. In this somewhat simpler case, we show how to organise the quantum mechanical perturbation theory in a novel efficient way by means of a suitable all-order Ansatz for the ground state of the associated Schrödinger problem. Our perturbative setup allows to systematically derive higher-order perturbative corrections in powers of the cusp angle as explicit non-perturbative functions of the effective coupling. This series approximation is compared with the numerical solution of the Schrödinger equation to show that we can achieve very good accuracy over the whole range of coupling and cusp angle. Our results have been obtained by relatively simple techniques. Nevertheless, they provide several non-trivial tests useful to check the application of Quantum Spectral Curve methods to the ladder approximation at non zero ϕ, in the two limits we studied.
2016
ads-cft correspondence; supersymmetric gauge theory
01 Pubblicazione su rivista::01a Articolo in rivista
On the cusp anomalous dimension in the ladder limit of N = 4 $$ \mathcal{N}=4 $$ SYM / Beccaria, Matteo; Fachechi, Alberto; Macorini, Guido. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2016:6(2016). [10.1007/jhep06(2016)009]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1709970
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact